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 1. Abstract
The Data Fusion Model maintained by the JDL Data Fusion Group is the most widely-used
method for categorizing data fusion-related functions.  This paper discusses the current effort
to revise and expand this model to facilitate the cost-effective development, acquisition,
integration and operation of multi-sensor/multi-source systems.

Data fusion involves combining information – in the broadest sense – to estimate or predict
the state of some aspect of the universe.  These may be represented in terms of attributive and
relational states.  If the job is to estimate the state of a people (or any other sentient beings), it
can be useful to include consideration of informational and perceptual states in addition to
the physical state.

Developing cost-effective multi-source information systems requires a standard method for
specifying data fusion processing and control functions, interfaces, and associated data bases.
The lack of common engineering standards for data fusion systems has been a major
impediment to integration and re-use of available technology. There is a general lack of
standardized — or even well-documented — performance evaluation, system engineering
methodologies, architecture paradigms, or multi-spectral models of targets and collection
systems.  In short, current developments do not lend themselves to objective evaluation,
comparison or re-use.

This paper reports on proposed revisions and expansions of the JDL Data Fusion model to
remedy some of these deficiencies.  This involves broadening the functional model and
related taxonomy beyond the original military focus, and integrating the Data Fusion Tree
Architecture model for system description, design and development.

 2. What is Data Fusion? What isn’t?
Data fusion is an increasingly important element of diverse weapon, intelligence, and
commercial systems.  Data fusion uses overlapping information to determine relationships
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among data (the data association function).  It uses the synergistic differences in the data to
improve the estimate/assessment of a reported environment (state estimation function).  As
such, data fusion can enable improved estimation of situations and, therefore, improved
responses to situations (Figure 1).
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Figure 1   Data Association uses overlapping sensor capabilities so that State Estimation
can exploit their complementary capabilities

Automated data fusion processes are generally employed to support human decision-making
by refining and reducing the quantity of information that system operators need to examine to
achieve timely, robust, and relevant assessments and projections of the situation.

Unfortunately, data fusion is a victim of its own popularity: the pervasiveness of data fusion
functions has engendered a profusion of overlapping research and development in many
applications. A welter of confusing terminology (Figure 2) obscures the fact that the same
ground has been plowed repeatedly.

The initial Data Fusion Lexicon, produced by the JDL Data Fusion Subgroup in 1987,
defined data fusion as

a process dealing with the association, correlation, and combination of data and
information from single and multiple sources to achieve refined position and identity
estimates, and complete and timely assessments of situations and threats, and their
significance.  The process is characterized by continuous refinements of its estimates
and assessments, and the evaluation of the need for additional sources, or
modification of the process itself, to achieve improved results [1].

As theory and applications have evolved over the years, it has become clear that this initial
definition is rather too restrictive.  We need to capture the fact that similar underlying
problems of data association and combination occur in a very wide range of engineering,
analysis and cognitive situations.  It is in this spirit that we critique the initial definition:
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Figure 2  (Con)fusion of terminology

(a) to say that data fusion is a process dealing with … suggests that there may be others.  The
way in which data fusion deals with these topics needs to be clarified;

(b) although the concept combination of data encompasses the broad range of problems of
interest,1 correlation does not.  Statistical correlation is merely one method for generating
and evaluating hypothesized associations among data;

(c) indeed, association is not an essential ingredient in combining multiple pieces of data.
The very important recent work in Random Set models of data fusion [2,3,4] and related
work in unified data fusion [5] provide generalizations that allow state estimation of
multiple targets without explicit report-to-target association;

(d) since single or multiple sources is comprehensive, it is superfluous in a definition;

(e) the reference to position and identity estimates should be broadened to cover all varieties
of state estimation;

(f) complete assessments are not required in all applications; timely, being application-
relative, is superfluous;

                                                
1 For lack of a more general term to encompass all, we may bundle information, knowledge, etc., as subsets of

data.



(g) threat assessment, of course, only has application in situations where threat is a factor.
We need to broaden this notion to include any assessment of the cost or utility
implications of estimated situations.  In general, data fusion involves refining and
predicting the states of entities, aggregates of entities and their relation to one’s own
plans and goals.  These estimates can include utility or other cost estimation (e.g. the
probability of survival given an estimated threat situation).

(h) Not every process of combining information involves collection management or process
refinement.  Thus the definition’s second sentence is illustrative, not definitional.

In summary, the following concise definition is proposed:

Data fusion is the process of combining data to refine state estimates and predictions.
It is fairly pointless to argue whether the term data fusion or some other term (e.g. one of
those included in Figure 2) is an appropriate label for this very broad concept.  There is no
body of common and accepted usage to which we can appeal for such specialized terms.
What is important is the recognition that this broad concept is an important topic for a unified
theoretical approach, and therefore deserving of its own label.
Recognizing the common elements across the diversity of data combination problems can
provide an enormous opportunity for synergistic development.  These range from signal
sorting, target tracking, multiple sensor Automatic Target Recognition and Combat
Identification, Battlefield Situation Awareness (in military applications), to system fault
diagnosis, medical diagnosis, criminal investigation, and economic, geopolitical and weather
forecasting.

 3. Data Fusion “Levels”
Of the many possible ways of differentiating among types of data fusion processes, that of
the Joint Directors of Laboratories’ Data Fusion Sub-Panel (now the Data Fusion Group has
gained the greatest popularity.  The JDL distinction among fusion “levels” (depicted in
Figure 3) provides an often useful distinction among data fusion processes that relate to the
refinement of “objects”, “situations,” “threats” and “processes.”[6]

There are, however, the following concerns with the ways in which these JDL Data Fusion
levels have been used in practice:

•  The JDL levels have frequently been interpreted as a canonical guide for partitioning
functionality within a system:  do level 1 fusion first, then levels 2, 3 and 4;

•  The original — and to some extent the current — JDL titles for these levels appear to be
focused on tactical targeting applications, so that the extension of the concepts (e.g. of
“threat refinement”) to other applications is not obvious;

•  For this and other reasons, the literature is rife with diverse interpretations of these levels.
The levels have been taken as distinguishing any of the following:  (a) the kinds of
association and/or characterization processing involved; (b) the kinds of entities being
characterized; (c) the degree to which the data used in the characterization already has
been processed.
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Figure 3 The JDL data fusion model (1992 version)

Let us try refining definitions for the “levels”.   Our objectives are to (a) provide a useful
categorization representing logically different types of problems, which are generally (though
not necessarily) solved by different techniques; and (b) maintain a degree of consistency with
the mainstream of technical usage.

Our proposed definitions are as follows:

•  Level 0 − Sub-Object Data Assessment: estimation and prediction of signal/object
observable states on the basis of pixel/signal level data association and characterization;

•  Level 1 − Object Assessment:  estimation and prediction of entity states on the basis of
observation-to-track association, continuous state estimation (e.g. kinematics) and
discrete state estimation (e.g.  target type and ID);

•  Level 2 − Situation Assessment:  estimation and prediction of relations among entities, to
include force structure and cross force relations, communications and perceptual
influences, physical context, etc.;

•  Level 3 − Impact Assessment: estimation and prediction of effects on situations of
planned or estimated/predicted actions by the participants; to include interactions
between action plans of multiple players (e.g. assessing susceptibilities and
vulnerabilities to estimated/predicted threat actions given one’s own planned actions);

•  Level 4 − Process Refinement (an element of Resource Management): adaptive data
acquisition and processing to support mission objectives.

Table 1 gives a general characterization of these concepts. Note that we differentiate the
levels first on the basis of types of estimation process, which typically relates to the type of
entity for which state is estimated.



If the process involves explicit association in performing state estimates (usually, but not
necessarily the case), there is a corresponding distinction among types of association process.
Figure 4 depicts the sorts of assignment matrices typically formed in each of these processing
levels. The examples are of two-dimensional matrices, as in associating current reports to
tracks.

Table 1  Characterization of the revised data fusion levels
Data Fusion Level  Association

Process
Estimation

Process
Entity

Estimated
L.0 – Sub-Object
   Assessment

Detection Signal

L.1 – Object
   Assessment

Assignment Attribution Physical
Object

L.2 – Situation
   Assessment

Relation Aggregation
(Situation)

L.3 – Impact
   Assessment

Aggregation Plan Interaction Effect
(Situation|Plans)

L.4 – Process
   Refinement

Planning (Control) (Action)2

                                                
2 Process Refinement does not involve estimation, but rather control.  Therefore, its product is a control

sequence, which -- by the duality of estimation and control -- relates to a controlled entity’s actions as an
estimate relates to an actual state.

Level 0 assignment involves hypothesizing the presence of a signal (i.e. of a common source
of sensed energy) and estimating its state.  Level 0 assignments include (a) signal detection
on the basis of integration of a time-series of data (e.g. the output of an A/D converter) and
(b) feature extraction from a region in imagery.  In this case, a region may correspond to a
cluster of closely spaced objects or to part of an object.

Level 1 assignments involve associating reports (or tracks from prior fusion nodes in a
processing sequence) into association hypotheses; for which we use the convenient
shorthand, ‘tracks’.  Each such track represents the hypothesis that the given set of reports is
the total set of reports available to the system referencing some individual entity.

Level 2 assignment involves associating tracks (i.e. hypothesized entities) into aggregations.
The state of the aggregate is represented as a network of relations among its elements.  We
admit any variety of relations to be considered − physical, organizational, informational,
perceptual − as appropriate to the given system’s mission.  As the class of relationships
estimated and the numbers of interrelated entities broaden, we tend to use the term ‘situation’
for an aggregate object of estimation.  A model for such development is presented in [7].
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Figure 4  Assignment matrices for various data fusion "levels"

Level 3 assignment is usually implemented as a prediction function, drawing particular kinds
of inferences from Level 2 associations.  Level 3 fusion estimates the “impact” of an assessed
situation; i.e. the outcome of various plans as they interact with one another and with the
environment.  The impact estimate can include likelihood and cost/utility measures
associated with potential outcomes of a player’s planned actions.3

Level 4 processing involves planning and control, not estimation.  As discussed in [8], as
there is a formal duality between estimation and control, there is a similar duality between
association and planning. Therefore, level 4 assignment involves assigning tasks to
resources.
An example of the relationships represented in fusion levels 0-3 is given in Figure 5.  More
and more, we are seeing the value of estimating entity states on the basis of context.  A
system that integrates data association and estimation processes of all “levels” will permit
entities to be understood as parts of complex situations.  A relational analysis, as illustrated
in Figure 6, permits evidence applicable resolving to a local estimation problem to be
propagated through a complex relational network.

Figure 7 depicts typical information flow across the data fusion “levels.” Level 0 functions
combine measurements to generate estimates of signals or features.

                                                
3 Because we have defined level 2 so broadly, level 3 is actually a subset of level 2.  Whereas level 2 involves
estimating/ predicting all types of relational states, level 3 involves predicting some or all of the relationships
between a player and his environment, to include interaction with other players’ actions, given the player’s
action plan and that of every other player.



At level 1, signal/feature reports are combined to estimate the states of objects. These are
combined, in turn, at level 2 to estimate situations (i.e. estimations of states of aggregations
of entities).  It is seen that level 3 is, according to this logical relationship, out of numerical
sequence.  It is a “higher” function than the planning function of level 4.

Indeed, Process Refinement (level 4) processes can interact with “classical” association/
estimation data fusion processes in any of a variety of ways, managing the operation of
individual fusion nodes or that of larger ensembles of such nodes, as illustrated in Figure 9
below.
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Figure 5  Multi-level inferencing example
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This point reinforces an important caveat, one too often ignored by designers of data fusion
system: the Data Fusion levels are intended only as a convenient categorization of data fusion
functions. They were never intended to be, nor should they be taken as a prescription for



designing systems: do level 0 fusion first, then level 1, then level 2, etc. Processing should be
partitioned in terms of the individual system requirements.  As shown in Figure 8, the
principles of assignment and aggregation -- i.e. the principles distinguishing of levels 0-3 –
do not exhaust the ways of partitioning data association/state estimation problems.  Often
hybrid or adaptive approaches are appropriate.
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Furthermore, diverse system requirements can drive the designer to many different solutions
for integrating data fusion and resource management (to include process refinement, our so-
called data fusion level 4).

Figure 9 shows the sort of highly integrated fusion/management systems appropriate to
applications rapid response as part of a multi-faceted, spatially distributed, sensor/response
system.4  Such solutions are facilitated by the formal duality between data fusion and
resource management, resulting in the analogous processing node paradigms for the two
functions, shown in Figure 10.

                                                
4 As one moves to the right of interlaced Fusion/Management trees as depicted in Figure 8, the

Fusion/Management node pairs generally operate with broader perspectives and slower response times.
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 4. Beyond the Physical
In general, then, the job of data fusion is that of estimating the state of some aspect of the
world.  When that aspect includes people (or any other information systems, for that matter),
it can be useful to include consideration of states in addition to the physical concerns of who,
what, and where.  In estimating and predicting the state of an observed target, it is common
to postulate internal states (e.g. a hidden Markov process when the states are discrete).
When the target is a person, or a group of people, we may think in terms of the target’s
informational and perceptual states as well as physical states.  By informational state we
mean the data available to the target.  By perceptual state we mean the targets own estimate
of the world state.
A person or other information system (represented by the box at the left of Figure 11) senses
physical stimuli as a function of his physical state in relation to that of the stimulating
physical world.  These include both stimuli originating outside the person’s body and those
originating from within.  He can combine multiple sensory reports to develop and refine what
we may call “tracks” (perceived entities), perceived aggregations, and estimated/predicted
interactions (levels 1-3 fusion).  This ensemble of perceived entities and their
interrelationships may be considered a part of the person’s Perceptual State.  As depicted in
the figure, his perceptual state can include an estimation of physical, informational and
perceptual states and relations of things in the world.
The person’s perceptions can be encoded symbolically for manipulation, communication or
storage. The set of symbolic representations available to the person may be termed his
Informational State.5

                                                
5 Informational State may be considered to encompass available data stores: databases, documents,
etc.  The notion of Information State is probably more applicable to a closed system (e.g. a non-
networked computer) than to a person, for whom the availability of information is generally a matter
of degree.  The tripartite view of reality is developed by E. Waltz [8] with reminiscences of the



The person acts in response to his perceptual state, thereby affecting his and the rest of the
world’s physical state.  His actions may include comparing and combining various
representations of reality: his network of perceived entities and relationships.  He may search
his memory or seek more information from the outside.”  These are processes associated with
data fusion level 4.
Other responses can include encoding perceptions in symbols, for storing or communicating
perceptions.  These can be incorporated in the person’s physical actions.  These, in turn, are
potential stimuli to people (including the stimulator himself) and other entities in the physical
world, depicted at the right of the figure.

                                                                                                                                                      
philosopher Karl Popper. The status of “Information” as a separable aspect of reality is certainly
subject to discussion.  Symbols can have both a physical and a perceptual aspect:  they can be
expressed by physical marks or sounds, but their interpretation (i.e. recognizing them
orthographically as well as semantically) is a matter of perception:

As seen in this example, symbol recognition (e.g. reading) is clearly a perceptual process.
It is a form of context-sensitive model-based processing.  The converse process, that of representing
perceptions symbolically for purpose of recording or communicating them, produces a physical
product – text, sounds, etc.  Such physical products need to be interpreted as symbols before their
informational content can be accessed. Whether there is anything to information in addition to these
physical and perceptual aspects is not totally clear.  Nor is the distinction between information and
perception that between what a person knows and what he thinks (cf. Plato’s Theatetus, in which
knowledge is shown to involve true opinion plus some sense of understanding).  Nonetheless, the
notion of Informational State is useful as a topic for estimation, since knowing what information is
available to an entity (e.g. an enemy commander’s sources of information) is an important element in
predicting his perceptual state and, therefore, in predicting changes in his physical state.
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The elements of state estimation in each of theses three aspects are given in Table 2.  Note
the recursive reference in the lower right cell.

Figure 12 illustrates this recursive character of perception.  Each decision-maker interacts
with every other one on the basis of an estimate of current, past and future states.  These
include not only estimates of who is doing what, where and when in the physical world; but
what is their informational state and what is their perceptual state (including, what do they
think of me?).

Table 2  Elements of state estimation

Object Aspect Attributive State Relational State

Discrete Continuous Discrete Continuous

Physical •  Type, ID

•  Activity State

•  Location/
Kinematics

•  Waveform
Parameters

•  Causal Relation
Type

•  Role Allocation

•  Spatio/
Temporal
Relationships

Informational •  Available Data
Types

•  Available Data
Records and
Quantities

•  Available Data
Values

•  Accuracies

•  Uncertainties

•  Informational
Relation Type

•  Info Source/
Recipient Role
Allocation

•  Source Data
   - Quality
   - Quantity
   - Timeliness

•  Output QQT

Perceptual •  Goals

•  Priorities

•  Cost
Assignments

•  Confidence

•  Plans/
Schedules

•  Influence
Relation Type

•  Influence
Source/
Recipient Role
Allocation

•  Source
Confidence

•  World State
Estimates (per
Table 2)



“Me”

“Him”

A’s World State
Estimate A’s Estimate of B’s

Perceptual State

A’s Estimate
of B’s Estimate

of A’s
Perceptual State

A

A’s Estimate
of B’s

Physical State
Continuous, discrete,

confidence

A’s Estimate of
His Own State

“Me”

“Him”

B

B’s World State
Estimate

State of
the Real World
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If state estimation and prediction are performed by an automatic system, then that system
may be said to possess physical and perceptual states; the latter containing estimates of
physical, informational and perceptual states of some aspects of the world.

 5. Engineering Standards
Developing a system that utilizes existing or developmental data fusion technology requires a
standard method for specifying data fusion processing and control functions, interfaces, and
associated data bases.  The lack of common engineering standards for data fusion systems
has been a major impediment to integration and re-use of available technology.  This
deficiency was revealed in a Correlation Technology Assessment conducted in 1995 for the
Defense Airborne Reconnaissance Office (DARO).  A survey of over 50 operational and
developmental Intelligence Correlation systems found a general lack of standardized — or
even well-documented — performance evaluation, system engineering methodologies,
architecture paradigms, or multi-spectral models of targets and collection systems.  In short,
current developments do not lend themselves to objective evaluation, comparison or re-
use.[10]

The Air Force Space Command Space Warfare Center Project Correlation was conducted in
FY1995-96 to define methods to improve the tactical utilization of data provided by current
data sources by providing cost-effective means for correlating information from multiple
sources.



The set of Data Fusion System Engineering Guidelines[11] developed under that effort were
developed to provide

•  a standard model for representing the requirements, design and performance of data
fusion systems and

•  a methodology for developing multi-source data fusion systems, selecting among
architecture and technique alternatives for cost-effective satisfaction of system
requirements.

The engineering guidelines recommend a data fusion architecture paradigm that defines the
components of data fusion systems, their interfaces, and the systems engineering process for
developing them.

The Guidelines are intended to:

•  support technology infusion and operations of current and developmental national
systems, broadcast services and tactical data processors;

•  influence the design and operation of new national systems, services and processors;
and

•  support the cost-effective development and implementation of correlation systems by
promoting commonality and interoperability.

As such, the Project Correlation Data Fusion System Engineering Guidelines can serve as a
basis for affordable development, acquisition, integration and operation of multi-
source/multi-sensor systems.  The insights obtained into the methods used in developing
practical data fusion systems provide the basis for comparisons necessary for the reuse of
legacy systems and for future data fusion system developments and operations, therefore
promoting cost-effective solutions.6

The guidelines recommended that systems performing data fusion be designed according to a
particular type of architecture, using the term ‘architecture’ in the broad sense defined by the
IEEE[12]:

An architecture is a structure of components, their relationships and the principles and
guidelines governing their design and evolution over time.

The general requirements for an architecture are to:

•  identify a focused purpose

•  facilitate user understanding/ communication

                                                
6 The starting point for developing these guidelines was the Engineering Guidelines for Data Correlation
Algorithm Characterization[13] developed by Llinas, Hall and Bowman under a related Project Correlation
effort.  Because these guidelines focused on data correlation techniques per se, it was necessary to extend
those guidelines for the other engineering functions essential to the design and development of data fusion
systems.



•  permit comparison & integration

•  promote expandability, modularity, and reusability

•  achieve most useful results with least cost of development

•  apply to the required range of situations.
The Guidelines recommend an architecture that represents data fusion processing in terms of
nodes as shown in Figure 10.  When the data fusion process is partitioned into multiple
processing nodes, the process is represented via a data fusion tree, illustrated in Figure 9.

The Guidelines recommend a four-phase process for developing data fusion processes within
an information processing system, shown in Figure 13.

Design and development flow from overall system requirements and constraints to a
specification of the role for data fusion within the system.  Further partitioning results in a
specification of a data fusion tree structure and corresponding nodes.  Pattern analysis of the
requirements for each node allows selection of appropriate techniques, based on analysis and
experience of applicability in the specified conditions.

In each phase, analysis of requirements leads to a further functional partitioning.
Performance analysis of the resulting point design can lead to further analysis, repartitioning
and redesign, or to initiation of the next design phase.  Thus, this process is amenable to
implementation via waterfall, spiral or other development methods.

Operational 
Test & Evaluation

DESIGN PHASE

1. Operational
Architecture
Design:
System Role

2.  System
Architecture Design:
Fusion Tree

3. Component
Function Design:
Fusion Node
Processing

4. Detailed Design/
Development:
Pattern Application

Performance
Evaluation

Feedback for Node Optimization

Optimization

1

2

3

4

Design
Constraints

Feedback for System Role Optimization

User Needs 
& Scenarios

Feedback for Design (Pattern)

Feedback for Tree Optimization

Performance
Evaluation

Performance
Evaluation

Performance
Evaluation

   Design Development (per level)

Functional
Partitioning

Functional
Partitioning

Functional
Partitioning

Functional
Partitioning

Requirements
Analysis

Requirements
Analysis

Requirements
Analysis

Requirements
Analysis

Point
Design

Point
Design

Point
Design

Point
Design

Figure 13  Data fusion system engineering method
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